Mercado de energia pós-SARS-CoV-2: relação estrutural de seus fatores críticos

Autores

  • Fernando Lámbarry-Vilchis Investigador, Escuela Superior de Comercio y Administración, Instituto Politécnico Nacional, Ciudad de México, México. https://orcid.org/0000-0002-0216-1647
  • Juan Carlos Moreno-Jiménez Investigador, Gerencia de Auditoría, Petróleos Mexicanos - Pemex, Ciudad de México, México. https://orcid.org/0000-0003-4766-3605

DOI:

https://doi.org/10.18046/j.estger.2021.158.4396

Palavras-chave:

SARS-CoV-2, mercado de energia, COVID-19, modelagem estrutural interpretativa, método de impactos cruzados

Resumo

O objetivo deste artigo foi modelar estruturalmente os fatores de alta prioridade frente ao impacto do SARS-coV-2 no mercado de ener­gia. Para tal, o método baseou-se na modelação estrutural interpretativa e na matriz de multiplicação de impactos cruzados aplicada a uma classificação. Conclui com um modelo de 12 fatores estruturados hierarquicamente em seis níveis, nos quais as preferências de consumo, modificações regulatórias e normativas, restrições políticas e estratégias de planejamento são as que têm maior influência no mercado de energia desde a perspectiva do México. Derivado disso, uma abordagem é uma maior participação de atores públicos e privados nos vetores de energia renovável.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

Agrawal, N. M. (2019). Modeling Deming’s quality principles to improve performance using interpretive structural modeling and MICMAC analysis. International Journal of Quality and Reliability Management, 36(7), 1159-1180. https://doi.org/10.1108/IJQRM-07-2018-0204

Alizadeh, R., Lund, P. D., Beynaghi, A., Abolghasemi, M. y Maknoon, R. (2016). An integrated scenario-based robust planning approach for foresight and strategic management with application to energy industry. Technological Forecasting and Social Change, 104, 162-171. https://doi.org/10.1016/j.techfore.2015.11.030

Arcade, J., Godet, M., Meunier, F. y Roubelat, F. (2004). Análisis estructural con el método Micmac y estrategia de los actores con el método Mactor. Buenos Aires: BCNA.

Banovac, E., Glavić, M. y Tešnjak, S. (2009). Establishing an efficient regulatory mechanism. Prerequisite for successful energy activities regulation. Energy, 34(2), 178-189. https://doi.org/10.1016/j.energy.2008.10.002

International Finance Corporation (2020). The Impact of COVID-19 on the Power Sector. Recuperado el 11 de junio de 2020, de: https://n9.cl/l88g3

BP. (2020). Statistical Review of World Energy, 2020 | 69th Edition. Bp, 66. Recuperado el 13 de agosto de 2020, de: https://n9.cl/b621

Bridge, G., Özkaynak, B. y Turhan, E. (2018). Energy infrastructure and the fate of the nation: Introduction to special issue. Energy Research y Social Science, 41, 1-11. https://doi.org/10.1016/j.erss.2018.04.029

Campiglio, E. (2016). Beyond carbon pricing: The role of banking and monetary policy in financing the transition to a low-carbon economy. Ecological Economics, 121, 220-230. https://doi.org/10.1016/j.ecolecon.2015.03.020

Campiglio, E., Dafermos, Y., Monnin, P., Ryan-Collins, J., Schotten, G. y Tanaka, M. (2018). Climate change challenges for central banks and financial regulators. Nature Climate Change, 8(6), 462-468. https://doi.org/10.1038/s41558-018-0175-0

Carbonara, N. y Pellegrino, R. (2018). Public-private partnerships for energy efficiency projects: A win-win model to choose the energy performance contracting structure. Journal of Cleaner Production, 170, 1064-1075. https://doi.org/10.1016/j.jclepro.2017.09.151

Cowell, R. y Devine-Wright, P. (2018). A ‘delivery-democracy dilemma’? Mapping and explaining policy change for public engagement with energy infrastructure. Journal of Environmental Policy y Planning, 20(4), 499-517. https://doi.org/10.1080/1523908X.2018.1443005

Chander, M., Jain, S. K. y Shankar, R. (2013). Modeling of information security management parameters in Indian organizations using ISM and MICMAC approach. Journal of Modelling in Management, 8(2), 171-189. https://doi.org/10.1108/JM2-10-2011-0054

Debnath, K. B. y Mourshed, M. (2018). Challenges and gaps for energy planning models in the developing-world context. Nature Energy, 3(3), 172-184. http://dx.doi.org/10.1038/s41560-018-0095-2

del Pilar, E. C., Alegado, I. y Bongo, M. F. (2019). Structural relationships among critical failure factors of microbusinesses. Journal of Small Business and Enterprise Development, 27(1), 148-174. https://doi.org/10.1108/JSBED-01-2019-0001

Diabat, A. y Govindan, K. (2011). An analysis of the drivers affecting the implementation of green supply chain management. Resources, Conservation and Recycling, 55(6), 659-667. https://doi.org/10.1016/j.resconrec.2010.12.002

Dube, A. S. y Gawande, R. S. (2016). Analysis of green supply chain barriers using integrated ISM-fuzzy MICMAC approach. Benchmarking, 23(6), 1558-1578. https://doi.org/10.1108/BIJ-06-2015-0057

European Parliament (2020). Towards a more resilient Europe post-coronavirus: An initial mapping of structural risks facing the EU. Recuperado el 7 de agosto de 2020, de: https://n9.cl/s9b8l

Filipović, S., Radovanović, M. y Golušin, V. (2018). Macroeconomic and political aspects of energy security - Exploratory data analysis. Renewable and Sustainable Energy Reviews, 97, 428-435. https://doi.org/10.1016/j.rser.2018.08.058

Foundational Economy Collective - FEC. (2020). ¿Qué viene después de la pandemia? Un programa de diez puntos para la renovación fundamental. El Trimestre Económico, 87(347), 899-917. https://doi.org/10.20430/ete.v87i347.1109

Gan, X., Chang, R., Zuo, J., Wen, T. y Zillante, G. (2018). Barriers to the transition towards off-site construction in China: An Interpretive structural modeling approach. Journal of Cleaner Production, 197, 8-18. https://doi.org/10.1016/j.jclepro.2018.06.184

Gasser, P. (2020). A review on energy security indices to compare country performances. Energy Policy, 139, 111339, 1-17. https://doi.org/10.1016/j.enpol.2020.111339

Gillingham, K. T., Knittel, C. R., Li, J., Ovaere, M. y Reguant, M. (2020). The Short-run and Long-run Effects of Covid-19 on Energy and the Environment. Joule, 4(7), 1337-1349. https://doi.org/10.1016/j.joule.2020.06.010

Godet, M., Durance, P. y Gerber, A. (2013). Strategic foresight la prospective use and misuse of scenario building. The Circle of Future Entrepreneurs. Recuperado el 3 de marzo de 2020, de: https://n9.cl/iw9q

Gössling, S. y Higham, J. (2020). The low-carbon imperative: Destination management under urgent climate change. Journal of Travel Research, 1-13. https://doi.org/10.1177/0047287520933679

Heiskanen, E., Johnson, M., Robinson, S., Vadovics, E. y Saastamoinen, M. (2010). Low-carbon communities as a context for individual behavioural change. Energy Policy, 38(12), 7586-7595. https://dx.doi.org/10.1016/j.enpol.2009.07.002

Herring, H. y Roy, R. (2007). Technological innovation, energy efficient design and the rebound effect. Technovation, 27(4), 194-203. https://doi.org/10.1016/j.technovation.2006.11.004

Jackson, R. B., Vengosh, A., Carey, J. W., Davies, R. J., Darrah, T. H., O'sullivan, F. y Pétron, G. (2014). The environmental costs and benefits of fracking. Annual review of Environment and Resources, 39, 327-362. https://doi.org/10.1146/annurev-environ-031113-144051

Johnson, N., Krey, V., McCollum, D. L., Rao, S., Riahi, K. y Rogelj, J. (2015). Stranded on a low-carbon planet: Implications of climate policy for the phase-out of coal-based power plants. Technological Forecasting and Social Change, 90, 89-102. https://doi.org/10.1016/j.techfore.2014.02.028

Kannan, G., Pokharel, S. y Kumar, P. S. (2009). A hybrid approach using ISM and fuzzy TOPSIS for the selection of reverse logistics provider. Resources, Conservation and Recycling, 54(1), 28-36. https://doi.org/10.1016/j.resconrec.2009.06.004

Katz, G. J. y Kider, J. T. (2008). All-pairs shortest-paths for large graphs on the GPU. Proceedings of the SIGGRAPH/Eurographics Workshop on Graphics Hardware, 47-55.

Keenan, M. y Popper, R. (2008). Comparing foresight “style” in six world regions. Foresight, 10(6), 16-38. https://doi.org/10.1108/14636680810918568

Kisel, E., Hamburg, A., Härm, M., Leppiman, A. y Ots, M. (2016). Concept for Energy Security Matrix. Energy Policy, 95, 1-9. https://doi.org/10.1016/j.enpol.2016.04.034

Kruyt, B., van Vuuren, D. P., de Vries, H. J. M. y Groenenberg, H. (2009). Indicators for energy security. Energy Policy, 37(6), 2166-2181. https://doi.org/10.1016/j.enpol.2009.02.006

Kuzemko, C., Bradshaw, M., Bridge, G., Goldthau, A., Jewell, J., Overland, I., Scholten, D.,… y Westphal, K. (2020). Covid-19 and the politics of sustainable energy transitions. Energy Research and Social Science, 68, 101685. https://doi.org/10.1016/j.erss.2020.101685

Luthra, S., Kumar, S., Kharb, R., Ansari, M. F. y Shimmi, S. L. (2014). Adoption of smart grid technologies: An analysis of interactions among barriers. Renewable and Sustainable Energy Reviews, 33, 554-565. https://doi.org/10.1016/j.rser.2014.02.030

Moret, S., Babonneau, F., Bierlaire, M. y Maréchal, F. (2020). Decision support for strategic energy planning: A robust optimization framework. European Journal of Operational Research, 280(2), 539-554. https://doi.org/10.1016/j.ejor.2019.06.015

Mundaca, G. (2017). Energy subsidies, public investment and endogenous growth. Energy Policy, 110, 693-709. https://doi.org/10.1016/j.enpol.2017.08.049

Nazarko, J., Ejdys, J., Halicka, K., Nazarko, Ł., Kononiuk, A. y Olszewska, A. (2017). Factor Analysis as a tool supporting STEEPVL approach to the identification of driving forces of technological innovation. Procedia Engineering, 182, 491-496. https://doi.org/10.1016/j.proeng.2017.03.142

Peterson, G. D., Cumming, G. S. y Carpenter, S. R. (2003). Scenario planning: A tool for conservation in an uncertain world. Conservation Biology, 17(2), 358-366. https://doi.org/10.1046/j.1523-1739.2003.01491.x

Polzin, F. (2017). Mobilizing private finance for low-carbon innovation. A systematic review of barriers and solutions, Renewable and Sustainable Energy Reviews, 77, 525-535. https://doi.org/10.1016/j.rser.2017.04.007

Popper, R. (2009). Mapping Foresight. Revealing how Europe and other world regions navigate into the future. In EFMN, Luxembourg: Publications Office of the European Union, European Commission (Issue November). Recuperado el 3 de abril de 2020 de: https://n9.cl/l3eew

Popper, R. y Teichler, T. (2011). 1st EFP Mapping report: Practical guide to mapping forward-looking activities (FLA) practices, players and outcomes. European Foresight Platform, 1-83. Recuperado el 5 de diciembre de 2019 de: https://n9.cl/jt1md

Organización Mundial de la Salud (2020). Coronavirus Disease (COVID-19) Pandemic. Recuperado el 13 de julio de 2020 de: https://n9.cl/t4jo8

Radovanović, M., Filipović, S. y Pavlović, D. (2017). Energy security measurement - A sustainable approach. Renewable and Sustainable Energy Reviews, 68, 1020-1032. https://doi.org/10.1016/j.rser.2016.02.010

Ramesh, A., Banwet, D. K. y Shankar, R. (2010). Modeling the barriers of supply chain collaboration. Journal of Modelling in Management, 5(2), 176-193. https://doi.org/10.1108/17465661011061014

Sagar, A. D. y Van der Zwaan, B. (2006). Technological innovation in the energy sector: RyD, deployment, and learning-by-doing. Energy policy, 34(17), 2601-2608. https://doi.org/10.1016/j.enpol.2005.04.012

Sagheer, S., Yadav, S. S. y Deshmukh, S. G. (2009). An application of interpretative structural modeling of the compliance to food standards. International Journal of Productivity and Performance Management, 58(2), 136-159. https://doi.org/10.1108/17410400910928734

Saxena, J. P., Sushil. y Vrat, P. (1992). Scenario building: A critical study of energy conservation in the Indian cement industry. Technological Forecasting and Social Change, 41(2), 121-146. https://doi.org/10.1016/0040-1625(92)90059-3

Shamshad, M., Sarim, M., Akhtar, A. y Tabash, M. I. (2018). Identifying critical success factors for sustainable growth of Indian banking sector using interpretive structural modeling (ISM). International Journal of Social Economics, 45(8), 1189-1204. https://doi.org/10.1108/IJSE-10-2017-0436

Shen, L., Song, X., Wu, Y., Liao, S. y Zhang, X. (2016). Interpretive structural modeling based factor analysis on the implementation of emission trading system in the Chinese building sector. Journal of Cleaner Production, 127, 214-227. https://doi.org/10.1016/j.jclepro.2016.03.151

Valdés, J. (2018). Arbitrariness in multidimensional energy security indicators. Ecological Economics, 145, 263-273. https://doi.org/10.1016/j.ecolecon.2017.09.002

Walker, W. E., Haasnoot, M. y Kwakkel, J. H. (2013). Adapt or perish: A review of planning approaches for adaptation under deep uncertainty. Sustainability, 5(3), 955-979. https://doi.org/10.3390/su5030955

Wang, G. H., Wang, Y. X. y Zhao, T. (2008). Analysis of interactions among the barriers to energy saving in China. Energy Policy, 36(6), 1879-1889. https://doi.org/10.1016/j.enpol.2008.02.006

Xu, X. y Zou, P. X. W. (2020). Analysis of factors and their hierarchical relationships influencing building energy performance using interpretive structural modelling (ISM) approach. Journal of Cleaner Production, 272, 122650. https://doi.org/10.1016/j.jclepro.2020.122650

Yadav, D. K. y Barve, A. (2015). Analysis of critical success factors of humanitarian supply chain: An application of Interpretive Structural Modeling. International Journal of Disaster Risk Reduction, 12, 213-225. https://doi.org/10.1016/j.ijdrr.2015.01.008

Yoshino, N. y Taghizadeh-Hesary, F. (2018). Alternatives to private finance: Role of fiscal policy reforms and energy taxation in development of renewable energy projects. En V. Anbumozhi, K. Kalirajan y F. Kimura (Eds.), Financing for low-carbon energy transition (pp. 335-357). Singapore: Springer. https://doi.org/10.1007/978-981-10-8582-6_13

Publicado

2021-02-04

Como Citar

Mercado de energia pós-SARS-CoV-2: relação estrutural de seus fatores críticos. (2021). Estudios Gerenciales, 37(158), 94-103. https://doi.org/10.18046/j.estger.2021.158.4396