COVID-19 and causality in volatility in the Chilean stock market
DOI:
https://doi.org/10.18046/j.estger.2021.159.4412Keywords:
COVID-19, Granger causality, volatility, emerging markets, uncertaintyAbstract
In this research, the unidirectional Granger causality is studied from the Infectious Disease Equity Market Volatility Tracker index towards the volatility of the Chilean stock market, which is modeled through a conditional autoregressive procedure. Three causality tests are applied and, in a complementary way, the cross-bicorrelation test. The results indicate that this index causes market volatility with most of the tests applied. This indicates the potential relevance of having this new indicator for agents that participate in financial markets, including regulators, companies, and brokers. Additionally, the results are consistent with the evidence on the predictive capacity of this index on oil price volatility and other indices.
Downloads
References
Alan, N. S., Engle, R. F. y Karagozoglu, A. K. (2020). Multi-regime forecasting model for the impact of COVID-19 pandemic on volatility in global equity markets. Available at SSRN 3646520. http://dx.doi.org/10.2139/ssrn.3646520
Al-Awadhi, A. M., Alsaifi, K., Al-Awadhi, A. y Alhammadi, S. (2020). Death and contagious infectious diseases: Impact of the COVID-19 virus on stock market returns. Journal of behavioral and experimental finance, 27, 100326. https://doi.org/10.1016/j.jbef.2020.100326
Amar, A. B., Bélaïd, F., Youssef, A. B., Chiao, B. y Guesmi, K. (2021). The unprecedented reaction of equity and commodity markets to COVID-19. Finance Research Letters, 38, 101853. https://doi.org/10.1016/j.frl.2020.101853
Ashraf, B. N. (2020). Stock markets’ reaction to COVID-19: Cases or fatalities? Research in International Business and Finance, 101249. https://doi.org/10.1016/j.ribaf.2020.101249
Bahrini, R. y Filfilan, A. (2020). Impact of the novel coronavirus on stock market returns: evidence from GCC countries. Quantitative Finance and Economics, 4(4), 640-652. https://doi.org/10.3934/QFE.2020029
Baker, S. R., Bloom, N. y Terry, S. J. (2020a). Using disasters to estimate the impact of uncertainty (N.o w27167). National Bureau of Economic Research. https://doi.org/10.3386/w27167
Baker, S. R., Bloom, N., Davis, S. J., Kost, K., Sammon, M. y Viratyosin, T. (2020b). The unprecedented stock market reaction to COVID-19. The Review of Asset Pricing Studies, 10(4), 742-758. https://doi.org/10.1093/rapstu/raaa008
Beck, T., Degryse, H. y Kneer, C. (2014). Is more finance better? Disentangling intermediation and size effects of financial systems. Journal of Financial Stability 10, 50-64. https://doi.org/10.1016/j.jfs.2013.03.005
Bildirici, M. E. y Turkmen, C. (2015). Nonlinear causality between oil and precious metals. Resources Policy, 46, 202-211. https://doi.org/10.1016/j.resourpol.2015.09.002
Bouri, E., Cepni, O., Gabauer, D. y Gupta, R. (2020a). Return connectedness across asset classes around the COVID-19 outbreak. International Review of Financial Analysis, 101646. https://doi.org/10.1016/j.irfa.2020.101646
Bouri, E., Demirer, R., Gupta, R. y Pierdzioch, C. (2020b). Infectious diseases, market uncertainty and oil market volatility. Energies, 13(15), 1-8. https://doi.org/10.3390/en13164090
Brooks, C. y Hinich, M. J. (1999). Cross-correlations and cross-bicorrelations in Sterling exchange rates. Journal of Empirical Finance, 6(4), 385-404.https://doi.org/10.1016/S0927-5398(99)00007-9
Brooks, C. y Hinich, M. J. (2001). Bicorrelations and cross-bicorrelations as non-linearity tests and tools for exchange rate forecasting. Journal of Forecasting, 20(3), 181-196. https://doi.org/10.1002/1099-131X(200104)20:3<181::AID-FOR781>3.0.CO;2-R
Brugger, S. y Ortiz, E. (2012). Mercados accionarios y su relación con la economía real en América Latina. Problemas del Desarrollo, 43(168), 63-93. http://www.scielo.org.mx/pdf/prode/v43n168/v43n168a4.pdf
Caporale, G. M., Gil-Alana, L. A. y Tripathy, T. (2020). Volatility persistence in the Russian stock market. Finance Research Letters, 32, 101216. https://doi.org/10.1016/j.frl.2019.06.014
Caporale, G. M., Howells, P. y Soliman, A. M. (2005). Endogenous growth models and stock market development: evidence from four countries. Review of Development Economics, 9(2), 166-176. https://doi.org/10.1111/j.1467-9361.2005.00270.x
Cascaldi-Garcia, D., Sarisoy, C., Londono-Yarce, J. M., Rogers, J. H., Datta, D., Ferreira, T. y Zer, I. (2020). What is certain about uncertainty? International Finance Discussion Papers 1294. Washington: Board of Governors of the Federal Reserve System. https://doi.org/10.17016/IFDP.2020.1294
Comisión Económica para América Latina y el Caribe (2020). Informe sobre el impacto económico en América Latina y el Caribe de la enfermedad por coronavirus (COVID-19). Recuperado el 26 de marzo de 2020, de: https://n9.cl/jyka
Comisión para el Mercado Financiero - CMF. (2020). CMF - Educa, Portal de Educación Financiera Recuperado el 15 de octubre de 2020, de: https://n9.cl/jov4h
Concha, Á. y Taborda, R. (2014). Insurance use and economic growth in Latin America. Some panel data evidence. Lecturas de economía, (81), 31-45. https://doi.org/10.17533/udea.le.n81a2
Coronado, S., Romero-Meza, R. y Venegas-Martínez, F. (2017). Non-linear multivariate dependence between the Mexican stock market index and the exchange rate: Efficiency hypothesis and political cycle in Mexico. Revista Mexicana de Economía y Finanzas, 12(1). https://doi.org/10.21919/remef.v12i1.17
Coronado, S., Fullerton, T. M. y Rojas, O. (2018a). A nonlinear empirical analysis of oil price co-movements. International Journal of Energy Economics and Policy, 8(3), 290-294.
Coronado, S., Jiménez-Rodríguez, R. y Rojas, O. (2018b). An empirical analysis of the relationships between crude oil, gold and stock markets. The Energy Journal, 39(Special Issue 1). https://doi.org/10.5547/01956574.39.SI1.scor
Coronado, S., Rojas, O., Romero-Meza, R., Serletis, A. y Chiu, L. V. (2018c). Crude oil and biofuel agricultural commodity prices. En F. Jawadi (Ed.), Uncertainty, expectations and asset price dynamics, dynamic modeling and econometrics in economics and finance (pp. 107-123). Cham: Springer. https://doi.org/10.1007/978-3-319-98714-9_5
Diks, C. y Panchenko, V. (2006). A new statistic and practical guidelines for nonparametric Granger causality testing. Journal of Economic Dynamics and Control, 30(9-10), 1647-1669. https://doi.org/10.1016/j.jedc.2005.08.008
D’Orazio, P. y Dirks, M. W. (2020). COVID-19 and financial markets: Assessing the impact of the coronavirus on the eurozone (N.o 859). Ruhr Economic Papers. https://doi.org/10.4419/86788995
Duarte, J. B. D. y Pérez-Iñigo, J. M. M. (2014). Comprobación de la eficiencia débil en los principales mercados financieros latinoamericanos. Estudios Gerenciales, 30(133), 365-375.https://doi.org/10.1016/j.estger.2014.05.005
Edwards, S. y Susmel, R. (1999). Contagion and volatility in the 1990s (N.o 153). Universidad del CEMA. Recuperado el 2 de octubre de 2020, de: https://ucema.edu.ar/publicaciones/download/documentos/153.pdf
El-Khatib, R. y Samet, A. (2020). Impact of COVID-19 on Emerging Markets. Available at SSRN 3685013. http://dx.doi.org/10.2139/ssrn.3685013
Emenogu, N. G., Adenomon, M. O. y Nweze, N. O. (2020). On the volatility of daily stock returns of Total Nigeria Plc: evidence from GARCH models, value-at-risk and backtesting. Financial Innovation, 6(1), 1-25. https://doi.org/10.1186/s40854-020-00178-1
Enisan, A. A. y Olufisayo, A. O. (2009). Stock market development and economic growth: Evidence from seven sub-Sahara African countries. Journal of economics and business, 61(2), 162-171. https://doi.org/10.1016/j.jeconbus.2008.05.001
Forbes Staff (2020). Mercados globales caen tras contagio de Trump. Forbes, Colombia. Recuperado el 2 de octubre de 2020, de: https://n9.cl/g9ov
Gherghina, S. C., Armeanu, D. Ș. y Joldeș, C. C. (2020). Stock market reactions to Covid-19 pandemic outbreak: Quantitative evidence from ARDL bounds tests and Granger causality analysis. International Journal of Environmental Research and Public Health, 17(18), 6729. https://doi.org/10.3390/ijerph17186729
Granger, C. W. J. (1969). Investigating causal relations by econometric models and cross-spectral methods. Econometrica, 37(3), 424. https://doi.org/10.2307/1912791
Gormsen, N. J. y Koijen, R. S. (2020). The corona virus, the stock market’s response, and growth expectations. Working Paper N.° 2020-22. https://bfi.uchicago.edu/wp-content/uploads/BFI_WP_202022.pdf
Hristu-Varsakelis, D. y Kyrtsou, C. (2010). Testing for granger causality in the presence of chaotic dynamics. Brussels Economic Review, 53(2), 323-327. https://doi.org/10.1016/j.frl.2020.101528
Im, T. L., San, P. W., On, C. K., Alfred, R. y Anthony, P. (2014). Impact of financial news headline and content to market sentiment. International Journal of Machine Learning and Computing, 4(3), 237- 242. https://doi.org/10.7763/IJMLC.2014.V4.418
Kyrtsou, C. y Labys, W. C. (2006). Evidence for chaotic dependence between US inflation and commodity prices. Journal of Macroeconomics, 28(1), 256-266. https://doi.org/10.1016/j.jmacro.2005.10.019
Kyrtsou, C. y Terraza, M. (2003). Is it possible to study chaotic and arch behaviour jointly? Application of a noisy mackey-glass equation with heteroskedastic errors to the Paris stock exchange returns series. Computational Economics, 21(3), 257-276. https://doi.org/10.1023/A:1023939610962
Lanteri, L. N. (2011). Desarrollo del mercado accionario y crecimiento económico. Alguna evidencia para la Argentina. Ensayos de Economía, 21(38), 117-145.
Lei, L., Shang, Y., Chen, Y. y Wei, Y. (2019). Does the financial crisis change the economic risk perception of crude oil traders? A MIDAS quantile regression approach. Finance Research Letters, 30, 341- 351. https://doi.org/10.1016/j.frl.2018.10.016
Li, Y., Liang, C., Ma, F. y Wang, J. (2020). The role of the IDEMV in predicting European stock market volatility during the COVID-19 pandemic. Finance Research Letters, 36, 101749. https://doi.org/https://doi.org/10.1016/j.frl.2020.101749
Mackey, M. y Glass, L. (1977). Oscillation and chaos in physiological control systems. Science, 197(4300), 287-289. https://doi.org/10.1126/science.267326
Marfatia, H. A. (2020). Investors’ risk perceptions in the US and global stock market integration. Research in International Business and Finance, 52, 101169. https://doi.org/10.1016/j.ribaf.2019.101169
Masson, M. P. R. (1998). Contagion: Monsoonal effects, spillovers, and jumps between multiple equilibria (No. 98-142). International Monetary Fund.
Moser, T. (2003). What is international financial contagion? International Finance, 6(2), 157-178. https://doi.org/10.1111/1468-2362.00113
Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: A new approach. Econometrica: Journal of the Econometric Society, 347- 370. https://doi.org/10.2307/2938260
Organización Panamericana Mundial de la Salud (2020). Coronavirus. Recuperado el 15 de septiembre de 2020, de: https://n9.cl/g59c
Ramelli, S. y Wagner, A. F. (2020). Feverish stock price reactions to COVID-19. The Review of Corporate Finance Studies, 9(3), 622-655. http://dx.doi.org/10.2139/ssrn.3550274
Rastogi, S., Don, J. y V, N. (2018). Volatility estimation using GARCH family of models: Comparison with option pricing. Pacific Business Review International, 10(8), 54-60.
Reyes-García, N. J., Venegas-Martínez, F. y Cruz-Aké, S. (2018). Un análisis comparativo entre GARCH-M, EGARCH y PJ-RS-EV para modelar la volatilidad de Índice de precios y cotizaciones de la Bolsa Mexicana de Valores. Panorama Económico, 14(27), 63-96. https://doi.org/10.29201/pe-ipn.v14i27.210
Romero-Meza, R., Bonilla, C. A. y Hinich, M. J. (2007). Nonlinear event detection in the Chilean stock market. Applied Economics Letters, 14(13), 987-991. https://doi.org/10.1080/13504850600706024
Romero-Meza, R., Coronado, S. y Serletis, A. (2014). Oil and the economy: A cross bicorrelation perspective. Journal of Economic Asymmetries, 11, 91-95. https://doi.org/10.1016/j.jeca.2014.08.003
Topcu, M. y Gulal, O. S. (2020). The impact of COVID-19 on emerging stock markets. Finance Research Letters, 101691. https://doi.org/10.1016/j.frl.2020.101691
Valenzuela, G. y Rodríguez, A. (2015). Interdependencia de mercados y transmisión de volatilidad en Latinoamérica. Innovar: Revista de ciencias administrativas y sociales, 25(55), 157-170. https://doi.org/10.15446/innovar.v25n55.47231
Van de Kauter, M., Breesch, D. y Hoste, V. (2015). Fine-grained analysis of explicit and implicit sentiment in financial news articles. Expert Systems with applications, 42(11), 4999-5010. https://doi.org/10.1016/j.eswa.2015.02.007
Walker, E. (1998). Mercado accionario y crecimiento económico en Chile. Cuadernos de Economía, 35(104), 49-72.
Wei, Y., Bai, L., Yang, K. y Wei, G. (2020) Are industry-level indicators more helpful to forecast industrial stock volatility? Evidence from Chinese manufacturing purchasing managers index. Journal of Forecasting, 40(1), 17-39. https://doi.org/10.1002/for.2696
Zaremba, A., Kizys, R., Aharon, D. Y. y Demir, E. (2020). Infected markets: Novel coronavirus, government interventions, and stock return volatility around the globe. Finance Research Letters, 101597. https://doi.org/10.1016/j.frl.2020.101597
Zhang, D., Hu, M. y Ji, Q. (2020). Financial markets under the global pandemic of COVID-19. Finance Research Letters, 36, 101528. https://doi.org/https://doi.org/10.1016/j.frl.2020.101528
Downloads
Published
Issue
Section
License
Articles are the sole responsibility of their authors, and will not compromise Icesi’s University principles or policies nor those of the Editorial Board of the journal Estudios Gerenciales. Authors authorize and accept the transfer of all rights to the journal, both for its print and electronic publication. After an article is published, it may be reproduced without previous permission of the author or the journal but the author(s), year, title, volume, number and range of pages of the publication must be mentioned. In addition, Estudios Gerenciales must be mentioned as the source (please, refrain from using Revista Estudios Gerenciales).