COVID-19 and causality in volatility in the Chilean stock market

Authors

DOI:

https://doi.org/10.18046/j.estger.2021.159.4412

Keywords:

COVID-19, Granger causality, volatility, emerging markets, uncertainty

Abstract

In this research, the unidirectional Granger causality is studied from the Infectious Disease Equity Market Volatility Tracker index towards the volatility of the Chilean stock market, which is modeled through a conditional autoregressive procedure. Three causality tests are applied and, in a complementary way, the cross-bicorrelation test. The results indicate that this index causes market volatility with most of the tests applied. This indicates the potential relevance of having this new indicator for agents that participate in financial markets, including regulators, companies, and brokers. Additionally, the results are consistent with the evidence on the predictive capacity of this index on oil price volatility and other indices.

Downloads

Download data is not yet available.

References

Alan, N. S., Engle, R. F. y Karagozoglu, A. K. (2020). Multi-regime forecasting model for the impact of COVID-19 pandemic on volatility in global equity markets. Available at SSRN 3646520. http://dx.doi.org/10.2139/ssrn.3646520

Al-Awadhi, A. M., Alsaifi, K., Al-Awadhi, A. y Alhammadi, S. (2020). Death and contagious infectious diseases: Impact of the COVID-19 virus on stock market returns. Journal of behavioral and experimental finance, 27, 100326. https://doi.org/10.1016/j.jbef.2020.100326

Amar, A. B., Bélaïd, F., Youssef, A. B., Chiao, B. y Guesmi, K. (2021). The unprecedented reaction of equity and commodity markets to COVID-19. Finance Research Letters, 38, 101853. https://doi.org/10.1016/j.frl.2020.101853

Ashraf, B. N. (2020). Stock markets’ reaction to COVID-19: Cases or fatalities? Research in International Business and Finance, 101249. https://doi.org/10.1016/j.ribaf.2020.101249

Bahrini, R. y Filfilan, A. (2020). Impact of the novel coronavirus on stock market returns: evidence from GCC countries. Quantitative Finance and Economics, 4(4), 640-652. https://doi.org/10.3934/QFE.2020029

Baker, S. R., Bloom, N. y Terry, S. J. (2020a). Using disasters to estimate the impact of uncertainty (N.o w27167). National Bureau of Economic Research. https://doi.org/10.3386/w27167

Baker, S. R., Bloom, N., Davis, S. J., Kost, K., Sammon, M. y Viratyosin, T. (2020b). The unprecedented stock market reaction to COVID-19. The Review of Asset Pricing Studies, 10(4), 742-758. https://doi.org/10.1093/rapstu/raaa008

Beck, T., Degryse, H. y Kneer, C. (2014). Is more finance better? Disentangling intermediation and size effects of financial systems. Journal of Financial Stability 10, 50-64. https://doi.org/10.1016/j.jfs.2013.03.005

Bildirici, M. E. y Turkmen, C. (2015). Nonlinear causality between oil and precious metals. Resources Policy, 46, 202-211. https://doi.org/10.1016/j.resourpol.2015.09.002

Bouri, E., Cepni, O., Gabauer, D. y Gupta, R. (2020a). Return connectedness across asset classes around the COVID-19 outbreak. International Review of Financial Analysis, 101646. https://doi.org/10.1016/j.irfa.2020.101646

Bouri, E., Demirer, R., Gupta, R. y Pierdzioch, C. (2020b). Infectious diseases, market uncertainty and oil market volatility. Energies, 13(15), 1-8. https://doi.org/10.3390/en13164090

Brooks, C. y Hinich, M. J. (1999). Cross-correlations and cross-bicorrelations in Sterling exchange rates. Journal of Empirical Finance, 6(4), 385-404.https://doi.org/10.1016/S0927-5398(99)00007-9

Brooks, C. y Hinich, M. J. (2001). Bicorrelations and cross-bicorrelations as non-linearity tests and tools for exchange rate forecasting. Journal of Forecasting, 20(3), 181-196. https://doi.org/10.1002/1099-131X(200104)20:3<181::AID-FOR781>3.0.CO;2-R

Brugger, S. y Ortiz, E. (2012). Mercados accionarios y su relación con la economía real en América Latina. Problemas del Desarrollo, 43(168), 63-93. http://www.scielo.org.mx/pdf/prode/v43n168/v43n168a4.pdf

Caporale, G. M., Gil-Alana, L. A. y Tripathy, T. (2020). Volatility persistence in the Russian stock market. Finance Research Letters, 32, 101216. https://doi.org/10.1016/j.frl.2019.06.014

Caporale, G. M., Howells, P. y Soliman, A. M. (2005). Endogenous growth models and stock market development: evidence from four countries. Review of Development Economics, 9(2), 166-176. https://doi.org/10.1111/j.1467-9361.2005.00270.x

Cascaldi-Garcia, D., Sarisoy, C., Londono-Yarce, J. M., Rogers, J. H., Datta, D., Ferreira, T. y Zer, I. (2020). What is certain about uncertainty? International Finance Discussion Papers 1294. Washington: Board of Governors of the Federal Reserve System. https://doi.org/10.17016/IFDP.2020.1294

Comisión Económica para América Latina y el Caribe (2020). Informe sobre el impacto económico en América Latina y el Caribe de la enfermedad por coronavirus (COVID-19). Recuperado el 26 de marzo de 2020, de: https://n9.cl/jyka

Comisión para el Mercado Financiero - CMF. (2020). CMF - Educa, Portal de Educación Financiera Recuperado el 15 de octubre de 2020, de: https://n9.cl/jov4h

Concha, Á. y Taborda, R. (2014). Insurance use and economic growth in Latin America. Some panel data evidence. Lecturas de economía, (81), 31-45. https://doi.org/10.17533/udea.le.n81a2

Coronado, S., Romero-Meza, R. y Venegas-Martínez, F. (2017). Non-linear multivariate dependence between the Mexican stock market index and the exchange rate: Efficiency hypothesis and political cycle in Mexico. Revista Mexicana de Economía y Finanzas, 12(1). https://doi.org/10.21919/remef.v12i1.17

Coronado, S., Fullerton, T. M. y Rojas, O. (2018a). A nonlinear empirical analysis of oil price co-movements. International Journal of Energy Economics and Policy, 8(3), 290-294.

Coronado, S., Jiménez-Rodríguez, R. y Rojas, O. (2018b). An empirical analysis of the relationships between crude oil, gold and stock markets. The Energy Journal, 39(Special Issue 1). https://doi.org/10.5547/01956574.39.SI1.scor

Coronado, S., Rojas, O., Romero-Meza, R., Serletis, A. y Chiu, L. V. (2018c). Crude oil and biofuel agricultural commodity prices. En F. Jawadi (Ed.), Uncertainty, expectations and asset price dynamics, dynamic modeling and econometrics in economics and finance (pp. 107-123). Cham: Springer. https://doi.org/10.1007/978-3-319-98714-9_5

Diks, C. y Panchenko, V. (2006). A new statistic and practical guidelines for nonparametric Granger causality testing. Journal of Economic Dynamics and Control, 30(9-10), 1647-1669. https://doi.org/10.1016/j.jedc.2005.08.008

D’Orazio, P. y Dirks, M. W. (2020). COVID-19 and financial markets: Assessing the impact of the coronavirus on the eurozone (N.o 859). Ruhr Economic Papers. https://doi.org/10.4419/86788995

Duarte, J. B. D. y Pérez-Iñigo, J. M. M. (2014). Comprobación de la eficiencia débil en los principales mercados financieros latinoamericanos. Estudios Gerenciales, 30(133), 365-375.https://doi.org/10.1016/j.estger.2014.05.005

Edwards, S. y Susmel, R. (1999). Contagion and volatility in the 1990s (N.o 153). Universidad del CEMA. Recuperado el 2 de octubre de 2020, de: https://ucema.edu.ar/publicaciones/download/documentos/153.pdf

El-Khatib, R. y Samet, A. (2020). Impact of COVID-19 on Emerging Markets. Available at SSRN 3685013. http://dx.doi.org/10.2139/ssrn.3685013

Emenogu, N. G., Adenomon, M. O. y Nweze, N. O. (2020). On the volatility of daily stock returns of Total Nigeria Plc: evidence from GARCH models, value-at-risk and backtesting. Financial Innovation, 6(1), 1-25. https://doi.org/10.1186/s40854-020-00178-1

Enisan, A. A. y Olufisayo, A. O. (2009). Stock market development and economic growth: Evidence from seven sub-Sahara African countries. Journal of economics and business, 61(2), 162-171. https://doi.org/10.1016/j.jeconbus.2008.05.001

Forbes Staff (2020). Mercados globales caen tras contagio de Trump. Forbes, Colombia. Recuperado el 2 de octubre de 2020, de: https://n9.cl/g9ov

Gherghina, S. C., Armeanu, D. Ș. y Joldeș, C. C. (2020). Stock market reactions to Covid-19 pandemic outbreak: Quantitative evidence from ARDL bounds tests and Granger causality analysis. International Journal of Environmental Research and Public Health, 17(18), 6729. https://doi.org/10.3390/ijerph17186729

Granger, C. W. J. (1969). Investigating causal relations by econometric models and cross-spectral methods. Econometrica, 37(3), 424. https://doi.org/10.2307/1912791

Gormsen, N. J. y Koijen, R. S. (2020). The corona virus, the stock market’s response, and growth expectations. Working Paper N.° 2020-22. https://bfi.uchicago.edu/wp-content/uploads/BFI_WP_202022.pdf

Hristu-Varsakelis, D. y Kyrtsou, C. (2010). Testing for granger causality in the presence of chaotic dynamics. Brussels Economic Review, 53(2), 323-327. https://doi.org/10.1016/j.frl.2020.101528

Im, T. L., San, P. W., On, C. K., Alfred, R. y Anthony, P. (2014). Impact of financial news headline and content to market sentiment. International Journal of Machine Learning and Computing, 4(3), 237- 242. https://doi.org/10.7763/IJMLC.2014.V4.418

Kyrtsou, C. y Labys, W. C. (2006). Evidence for chaotic dependence between US inflation and commodity prices. Journal of Macroeconomics, 28(1), 256-266. https://doi.org/10.1016/j.jmacro.2005.10.019

Kyrtsou, C. y Terraza, M. (2003). Is it possible to study chaotic and arch behaviour jointly? Application of a noisy mackey-glass equation with heteroskedastic errors to the Paris stock exchange returns series. Computational Economics, 21(3), 257-276. https://doi.org/10.1023/A:1023939610962

Lanteri, L. N. (2011). Desarrollo del mercado accionario y crecimiento económico. Alguna evidencia para la Argentina. Ensayos de Economía, 21(38), 117-145.

Lei, L., Shang, Y., Chen, Y. y Wei, Y. (2019). Does the financial crisis change the economic risk perception of crude oil traders? A MIDAS quantile regression approach. Finance Research Letters, 30, 341- 351. https://doi.org/10.1016/j.frl.2018.10.016

Li, Y., Liang, C., Ma, F. y Wang, J. (2020). The role of the IDEMV in predicting European stock market volatility during the COVID-19 pandemic. Finance Research Letters, 36, 101749. https://doi.org/https://doi.org/10.1016/j.frl.2020.101749

Mackey, M. y Glass, L. (1977). Oscillation and chaos in physiological control systems. Science, 197(4300), 287-289. https://doi.org/10.1126/science.267326

Marfatia, H. A. (2020). Investors’ risk perceptions in the US and global stock market integration. Research in International Business and Finance, 52, 101169. https://doi.org/10.1016/j.ribaf.2019.101169

Masson, M. P. R. (1998). Contagion: Monsoonal effects, spillovers, and jumps between multiple equilibria (No. 98-142). International Monetary Fund.

Moser, T. (2003). What is international financial contagion? International Finance, 6(2), 157-178. https://doi.org/10.1111/1468-2362.00113

Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: A new approach. Econometrica: Journal of the Econometric Society, 347- 370. https://doi.org/10.2307/2938260

Organización Panamericana Mundial de la Salud (2020). Coronavirus. Recuperado el 15 de septiembre de 2020, de: https://n9.cl/g59c

Ramelli, S. y Wagner, A. F. (2020). Feverish stock price reactions to COVID-19. The Review of Corporate Finance Studies, 9(3), 622-655. http://dx.doi.org/10.2139/ssrn.3550274

Rastogi, S., Don, J. y V, N. (2018). Volatility estimation using GARCH family of models: Comparison with option pricing. Pacific Business Review International, 10(8), 54-60.

Reyes-García, N. J., Venegas-Martínez, F. y Cruz-Aké, S. (2018). Un análisis comparativo entre GARCH-M, EGARCH y PJ-RS-EV para modelar la volatilidad de Índice de precios y cotizaciones de la Bolsa Mexicana de Valores. Panorama Económico, 14(27), 63-96. https://doi.org/10.29201/pe-ipn.v14i27.210

Romero-Meza, R., Bonilla, C. A. y Hinich, M. J. (2007). Nonlinear event detection in the Chilean stock market. Applied Economics Letters, 14(13), 987-991. https://doi.org/10.1080/13504850600706024

Romero-Meza, R., Coronado, S. y Serletis, A. (2014). Oil and the economy: A cross bicorrelation perspective. Journal of Economic Asymmetries, 11, 91-95. https://doi.org/10.1016/j.jeca.2014.08.003

Topcu, M. y Gulal, O. S. (2020). The impact of COVID-19 on emerging stock markets. Finance Research Letters, 101691. https://doi.org/10.1016/j.frl.2020.101691

Valenzuela, G. y Rodríguez, A. (2015). Interdependencia de mercados y transmisión de volatilidad en Latinoamérica. Innovar: Revista de ciencias administrativas y sociales, 25(55), 157-170. https://doi.org/10.15446/innovar.v25n55.47231

Van de Kauter, M., Breesch, D. y Hoste, V. (2015). Fine-grained analysis of explicit and implicit sentiment in financial news articles. Expert Systems with applications, 42(11), 4999-5010. https://doi.org/10.1016/j.eswa.2015.02.007

Walker, E. (1998). Mercado accionario y crecimiento económico en Chile. Cuadernos de Economía, 35(104), 49-72.

Wei, Y., Bai, L., Yang, K. y Wei, G. (2020) Are industry-level indicators more helpful to forecast industrial stock volatility? Evidence from Chinese manufacturing purchasing managers index. Journal of Forecasting, 40(1), 17-39. https://doi.org/10.1002/for.2696

Zaremba, A., Kizys, R., Aharon, D. Y. y Demir, E. (2020). Infected markets: Novel coronavirus, government interventions, and stock return volatility around the globe. Finance Research Letters, 101597. https://doi.org/10.1016/j.frl.2020.101597

Zhang, D., Hu, M. y Ji, Q. (2020). Financial markets under the global pandemic of COVID-19. Finance Research Letters, 36, 101528. https://doi.org/https://doi.org/10.1016/j.frl.2020.101528

Published

2021-04-13

How to Cite

COVID-19 and causality in volatility in the Chilean stock market . (2021). Estudios Gerenciales, 37(159), 242-250. https://doi.org/10.18046/j.estger.2021.159.4412