DESIGN OF A FUZZY EXPERT SYSTEM: CREDIT RISK ASSESSMENT OF STOCK BROKERAGE FIRMS IN GRANTING FINANCIAL RESOURCES (Article published in Spanish)

Authors

  • Santiago Medina Hurtado Profesor EIO Universidad Nacional de Colombia, Phd. Facultad de Minas, Medellín, Colombia.
  • Oscar Oswaldo Manco Ingeniero Administrador, Mst. Universidad Nacional de Colombia. Facultad de Minas, Medellín, Colombia

DOI:

https://doi.org/10.1016/S0123-5923(07)70019-0

Keywords:

Fuzzy Inference System, risk analysis, tally quota, credit risk

Abstract

This research work reviews and describes the model of a system to allocate financial resources to stock brokerage companies and ensure that resources are invested for the benefit of the company (investor) in such a way that it not only mitigates the risk of not receiving equity payments, but also generates additional yields to the company from the equity investment. The model based on fuzzy expert systems allows sustaining these decisions of allocating financial resources. The paper initially provides a description of the necessary conceptual framework to ensure proper understanding of the system. Then it discusses a general description of the inference system, thereby taking into account the selection of entry variables and the creation of 3 integrated macro-assessments (risk analysis, fundamental analysis, and financial analysis). These assessments allow calculating the financial resources or credit limits allocated to each stock brokerage firm. The last section provides a review of 10 randomly selected firms to prove and validate the model and ensure that it yields results that are consistent with an expert assessment. The results can then be used in the everyday assessment of brokerage firms.

Downloads

Download data is not yet available.

References

Amat, O., Esteve, M. & Tomas, J. (2002). Cómo analizan las entidades financieras a sus clientes. Barcelona: Gestión 2000.

Bojadziev, G. & Bojadziev, M. (1997). Fuzzy logic for business, finance, and management. U.K.: World Scientific Publishing Co. Pte. Ltd.

Devore, J.L. (1998). Probabilidad y estadística para ingeniería y ciencias. International México, D.F.: Thomson Editores.

Díez de Castro, L. & Mascareñas, J. (1994). Ingeniería financiera. Madrid: McGraw Hill / Interamericana de España, S.A.U.

Elizondo, A (c). (2004). Medición integral del riesgo de crédito. México, D.F: Editorial Limusa (Noriega Editores).

Escallón Cortés, B. & Tamayo, E. (1998). Principios fundamentales y aplicación de técnicas de lógica difusa en el control de un sistema simple. Medellín: Universidad Nacional de Colombia - Sede Medellín.

Facchinetti, G., Magni, C.A., Mastroleo, G. & Vignola, M. (2001, Julio). Valuing strategic investments with a fuzzy expert system: An Italian case. Proceedings of International Fuzzy Systems Association and The North American Fuzzy Information Processing Society, Joint Conference, Vancouver, Canada.

García, O.L. (1999). Administración financiera: Fundamentos y aplicaciones. Cali, Colombia: Prensa Moderna Impresores S.A.

Jorion, P. (2000). Valor en riesgo. México, D.F.: Limusa (Noriega Editores), Universidad de California, Irvine.

Jang, J.-S.R., Sun, C.-T. & Mizutani, E. (1997). Neuro - Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence. New York: Prentice Hall.

Kasabov, N. (1998). Foundations of Neural Networks, Fuzzy Systems and Knowledge Engineering. Cambridge: MIT Press.

Knop, R, Ordovás, R & Francesc, J. (2004). Medición de riesgos de mercado y de crédito. Madrid : Ariel Económica.

Kosko, B. (1992). Fuzzy Systems as Universal Approximators. En Proc. IEEE Int. Conf. On Fuzzy Systems (pp. 1153-1162). San Diego, CA: IEEE

Kosko, B. (1995). Pensamientos borrosos. La nueva ciencia de la lógica borrosa. Barcelona, España: Crítica.

Kulkarni, A. (2001). Computer Vision and Fuzzy-Neuronal Systems. New York: Prentice Hall.

Magni, C.A., Mastroleo, G. & Facchinetti, G. A. (2001). Fuzzy Expert System for Solving Real Option Decision Processes. Fuzzy Economic Review, VI (2), 51-73.

Martín del Brío, B & Sanz Molina, A. (2002). Redes neuronales y sistemas difusos. México D.F.: Alfaomega Ra - Ma. Cámara Nacional de la Industria Editorial Mexicana.

Soler, J., Staking, K., Ayuso, A., Beato, P., Botín, E., Escrig, M & Falero, B. (1999). Gestión de riesgos financieros. Washington D.C.: Banco Interamericano de Desarrollo - Grupo Santander.

Published

2007-09-30

Issue

Section

Research articles

How to Cite

DESIGN OF A FUZZY EXPERT SYSTEM: CREDIT RISK ASSESSMENT OF STOCK BROKERAGE FIRMS IN GRANTING FINANCIAL RESOURCES (Article published in Spanish). (2007). Estudios Gerenciales, 23(104), 101-131. https://doi.org/10.1016/S0123-5923(07)70019-0